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Abstract

Analysis of ca. 17,000 fish remains recovered from the late Upper Paleolithic/early Epi-

Paleolithic (LGM; 23,000 BP) waterlogged site of Ohalo II (Rift Valley, Israel) provides new

insights into the role of wetland habitats and the fish inhabiting them during the evolution of

economic strategies prior to the agricultural evolution. Of the current 19 native fish species

in Lake Kinneret (Sea of Galilee), eight species were identified at Ohalo II, belonging to two

freshwater families: Cyprinidae (carps) and Cichlidae (St. Peter fish). Employing a large set

of quantitative and qualitative criteria (NISP, species richness, diversity, skeletal element

representation, fragmentation, color, spatial distribution, etc.), we demonstrate that the

inhabitants of Ohalo II used their knowledge of the breeding behavior of different species of

fish, for year-round intensive exploitation.

Introduction

The contribution of small game species to the human diet is recognized since the Middle

Paleolithic [1–7]. It is therefore surprising that the contribution of fish has generally been

ignored, as in terms of food distribution, diversification, intensification, dietary costs, and ben-

efits, the aquatic fauna presents a high diversity of abundant and easily collected food that in

many cases does not require specialization and produces high return rates [8–11]. The notion

that “. . .the use of fish in the Middle Paleolithic was, at best, very scanty” [12]; p.335), has led to

the incorrect conclusion that fish exploitation became a major activity only during the Upper

Paleolithic, mainly towards the Terminal Pleistocene and early Holocene (ca. 12 ka BP). Two

major causes have been suggested for the intensified exploitation of aquatic resources: 1) a

decrease in hunting options for coastal groups; and 2) the need for alternative sources of pro-

teins and calories [12]. This is questionable, however, as unlike marine resources, there is evi-

dence to suggest that freshwater resources had been exploited since the Early Pleistocene, i.e.,

1.95 mya [1, 13–17].
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In the current study we demonstrate that the intensive exploitation of freshwater habitats,

and the fish inhabiting them, was practiced in parallel to terrestrial animal exploitation long

before the Neolithic revolution; that engaging in fishing was a year-round activity and not an

opportunistic one; and that the nutritional value of fish was high, while the energetic costs of

obtaining it were low.

An exceptional opportunity to investigate the role of fish in the Late Upper Paleolithic

(LUP) hunter-gatherer economy is provided by the submerged site of Ohalo II (14C 20–23,000

calBP), which was occasionally exposed on the southern shore of Lake Kinneret between

1989–2001 (Fig 1) [18–20]. In addition to the diverse and well-preserved botanical and faunal

remains (due to the anaerobic conditions) recovered at the site, thousands of fish bones were

recovered embedded within the cultural layers [21–27].

In this study we examined the role of Lake Kinneret wetland habitats and their fish commu-

nities in the late Upper Paleolithic subsistence economy. The exceptionally large assemblage of

well-preserved fish remains from Ohalo II enabled us to examine the association between the

fish assemblage’s characteristics (species richness, diversity, skeletal element representation,

and fragmentation, etc.) and human activities at the site (dietary preferences, fishing grounds,

techniques, seasonality, and processing methods).

Background

Lake Kinneret

Lake Kinneret (Fig 1) is situated at the northern part of the Jordan Rift valley, in the north of

Israel (GPS: Latitude: 32˚ 49’ 59.99" N; Longitude: 35˚ 34’ 59.99" E). The modern lake evolved

during the Late Pleistocene from ancient water bodies that filled the Kinneret tectonic depres-

sion [28–31]. Today, the lake’s water level is ca. 209 m below sea level, and it is 22 km long

(N-S), 12 km wide (S-W), and up to 43 meter deep [32]. At present, the lake is mainly fed from

the north by the Jordan River, which also drains the lake southwards. The lake is warm and

monomictic, and its water level fluctuates up to 4 m depending on precipitation, evaporation,

and water abstraction [33].

Ohalo II site

Ohalo II is a late Upper Paleolithic (locally termed Early Epipaleolithic) submerged site,

located on the south-western shore of Lake Kinneret (GPS: 32˚43’18.12" N 35˚34’10.37" E), at

212–213 meters below sea level (Fig 1) [20, 34]. The site is estimated to cover an area of 2,000

m2, of which 400 m2 have been excavated during several seasons (1989–1991; 1999–2001). Sev-

eral in-situ features were exposed (Fig 1), including the floors of six brush huts, open-air

hearths, and other installations [22, 35–37]. Brush hut 1 (Locus 1) is exceptional in terms of its

size and excellent preservation of charred wall bases made of salt cedar (Tamarix) and oak

(Quercus), three successive floors with activity areas, grass bedding, an in-situ grinding stone

for cereal processing, and fragments of small twisted fibers [22, 25, 27, 36–40].

Additionally, the remains of three individuals were recovered at Ohalo II site: a mandible

(Ohalo II, H-1:); a complete articulated skeleton buried in a flexed position (Ohalo-II, H-2);

and two humeri (Ohalo II, H-3) [35]. Diverse faunal remains were found, including medium

and small-sized mammals, reptiles, birds, mollusks, and thousands of fish remains [15, 17, 21–

23, 26, 41, 42]. A wide diversity of edible seeds and fruits were also recovered and more than

150 plant taxa have been identified [25, 27, 40, 43].

The site has been dated to 22,500–23,500 calBP, based on 50 14C dates of in-situ botanical

remains (11 loci were directly dated by 34 14C samples), including samples from pre-occupa-

tion and post-occupation layers [20, 22, 27, 34, 36, 37, 44, 45]. These dates falls within the
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range of the Late Upper Paleolithic, as further supported by the lithic assemblages (tools and

manufacture debris) [46]. Altough each of the loci examined may represent different stage of

occupation, the uniformity of the flint assemblage suggest that Ohalo II was repeatedly occu-

pied by the same cultural entity, with a short gap of few years between them [34].

Lake Kinneret native ichthyofauna

The present ichthyofauna of Lake Kinneret comprises 19 indigenous fish species (Table 1)

from six families that originate from Africa, Central Asia, and Europe [47–53]. These include

several endemic species: Mirogrex terraesanctae (Kinneret bleak, “Lavnun Ha’Kinneret", previ-

ously assigned to Acanthobrama; Cyprinidae), Tristramella simonis simonis (“Tvarnun simon,”

Cichlidae), Tristramella sacra (“Long jaw Tvarnun listani”, Cichlidae), and Astatotilapia flavi-
josephi (Josephus cichlid, "Amununit Yosef”, Cichlidae) [48, 50, 54]. Commercial fishing

reports from 1936 indicate that the most abundant captured fish at that time were: M. terrae-
sanctae (36%), Luciobarbus longiceps and Carasobarbus canis (33%), and Cichlidae (31%) [55].

Material

The fish bone assemblage

The studied sample of fish bones (ca. 17,000; S1 Table) was recovered from four loci: Loci 1

and 3 (brush hut floors), Locus 7 (an open-air activity area with hearth remains), and Locus 8

(a small pit) (Fig 1). Sediments were wet sieved through a 1 mm mesh and fish remains were

analyzed and identified in the lab under a Zeiss Stereomicroscope (Zeiss Stemi DV4). Each

bone received a catalogue number (S1 Table), and the assemblage is stored at the National Nat-

ural History Collections of the Hebrew University of Jerusalem.

Terminology and calculations were performed following standard zooarchaeological

approaches and methods [56–62]. The number of identified specimens (NISP) was used as a

basic quantitative unit for measuring fish taxonomic presence, ordinal ranking, relative abun-

dance, body part representation, and spatial distribution [59, 63, 64].

Fig 1. Map of Israel, location of the Ohalo II site, and the excavated loci from which fish remains were examined for this study.

https://doi.org/10.1371/journal.pone.0198747.g001
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As no simple procedure exists to distinguish cultural from biological aquatic accumula-

tions, we employed various parameters that assist in distinguishing anthropogenic from non-

anthropogenic accumulations [16, 65–74]. The archeological context of the fish remains was

pivotal in selecting the samples for the current analysis and evaluating their cultural role in

Ohalo II.

Fish composition and diversity

Since the structure of biological communities tends to change through time, identification of

the taxonomic composition and diversity of a fossil assemblage is challenging [75, 76]. Ohalo

II fish remains were identified according to several reference collections of modern and fossil

fish. These comprised a native fish collected from Lake Kinneret, Lake Hula, the Jordan River,

and the coastal rivers of Israel [16, 42, 77], and modern and fossil reference collections from

the Levant and Africa, housed at the Natural History Museums of Brussels and London.

Taxonomic abundance was measured as percentage of the total NISP [63, 64]. Species rich-

ness (S’) was calculated according to the number of genera identified [78]. Species diversity

was calculated by using Shannon-Wiener diversity (H’) and Brillouin Index (HB) [59, 78, 79].

The Shannon-Wiener index was used since it is more sensitive to the less abundant species

and to species richness as a whole. However, since this index assumes a random sample, we

also calculated the Brillouin Index, which does not require random sampling.

We used Sørensen similarity index (Krebs 1999) to compare species diversity from three

assemblages: 1). Ohalo II; 2) Lake Kinneret littoral ichthyofauna [52, 74, 80]; and 3). Lake Kin-

neret natural death assemblage [74]. The Sørensen similarity index formula is (Krebs 1999):

SS = 2a/(2a + b + c), where a = number of species common to both sites; b = number of species

unique to the first site; c = number of species unique to the second site (SS is usually multiplied

by 100%).

As fish composition and diversity are prone to bias depending on sample size, we used the

rarefaction technique to examine the influence of sample size on species richness and bone

representation at Ohalo II, by loci (Analytic Rarefaction V.1.3, developed for Mac: [81]. Rare-

faction calculates the expected number of species in larger samples of n individuals [82].

Ethics statement. The fish collected for this study were purchased from the local fish mar-

ket. No permits were required for the described study.

Bone representation and preservation

Skeletal element representation. Relative bone representation (RBR) was calculated for

each taxon from the NISP values of individual skeletal elements. We also calculated the RBR

when all identified bones of a given taxa were grouped into nine cranial and postcranial ana-

tomic regions: neurocranium, branchial region, hyoid region, oromandibular region and oper-

cular series from the cranial region, and appendicular skeleton, median fins, Weberian

apparatus and vertebral column from the postcranial region [62, 74, 84, 85].

The survival index (SI) was calculated as the ratio between the numbers of observed bones

(NISP) and the numbers of expected bones (per skeletal element and per anatomic region).

The expected bones representation was calculated (per taxon) as the proportion of a given

bone (e.g., vertebrae) in a complete fish skeleton multiplied by the total NISP (regardless of %

fragmentation) [86]. When SI = 1, the observed NISP equals the expected NISP. SI >1 implies

over-representation, while SI< 1 indicates under-representation at the site. The differences

observed in the numbers of observed and expected bones (NISP) were compared using chi-

square contingency tests, with df = n-1. We further examined whether the obtained SI values

were affected by the bones’ state of fragmentation (as described below).

Earliest evidence of fishing in Lake Kinneret (Sea of Galilee), Israel
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Fragmentation. Since a high NISP may result from a high degree of fragmentation, for

each bone we also evaluated the relative percentage of preservation [86]. For further analysis

and comparison between assemblages, we classified the bones’ rate of fragmentation into three

groups: "highly fragmented"–less than 50% of the bone preserved; "fragmented"– 51–75% of

the bone preserved; and "well preserved” > 76% of the bone preserved.

Burning: Changes in bone color are commonly used for identifying burnt bones [68, 87].

However, at waterlogged sites bone color can also change due to mineral staining [88, 89]. To

distinguish between the two (burning vs. mineral stained bones), we selected representative

bones for the various colors (brown, dark brown, black, gray, white) and examined their min-

eralogical composition with a Fourier Transform Infra-red (FTIR) spectrometer (from

MIDAC Corporation, Costa Mesa, CA, USA, housed at the Weizmann Institute, Rehovot,

Israel) [90, 91].

Bone spatial distribution. Bone spatial distribution patterns (clumped, random, or uni-

form) were calculated for loci with NISP > 900, using the standardized Morisita index of dis-

persion [78]. In addition, we calculated the standardized scatter frequency (BSF) as the

number of bones (NISP) in each excavated unit divided by the volume of that unit (0.5 x 0.5 x

0.05 m) [64, 74, 86, 92, 93].

Fish economic value

Differentiation between large and small cyprinid. Differentiations between large and

small cyprinids was carried out based on vertebrae centrum dimensions: maximum width,

length and height [94, 95]). Width diameter<3.5mm< was used to differentiate small from

large cyprinids (TL <220mm<) [42]. Vertebrae larger than 3.5 mm in width can represent

only three taxonomic groups: Luciobarbus longiceps, Carasobarbus canis, and Capoeta damas-
cina; whereas smaller vertebrae may represent the full taxonomic composition of cyprinids.

Additionally, we used predicting equations for body size (length, body mass), for each species

separately, based on the atlas and axis vertebrae dimensions [42].

Fish exploitation index (prey choice model). Fish exploitation index (FEI) was calculated

based on optimal foraging and prey choice models [9, 96]. These models are based on the rela-

tive abundance index (AI), assuming that the best resources collected are those that provide

the highest energetic return and demand the lowest energetic costs [97, 98]. Given the relation-

ship between body size, habitat, fishing methods, technology at the time, and resource ranking,

we regarded large littoral fish as ‘high-ranked’ and small pelagic fish as ‘low-ranked’. We esti-

mated changes in the contribution of high and low-ranked resources to the human diet, fol-

lowing Butler’s FEI formula [9]. When the index value is close to 1, the contribution of large,

higher-ranked fish is high.

At Ohalo II, large taxa refer to fish with maximum total length (TL) greater than 220 mm

(Table 1). Cyprinids comprised the following species: Carasobarbus canis, Luciobarbus longi-
ceps, and Capoeta damascina; and cichlids comprised: Coptodon zillii, Oreochromis aureus, Sar-
otherodon galilaeus, Tristramella sacra, and Tristramella simonis simonis.

Validity: Are fish bone accumulations at Ohalo II anthropogenic?

Distinguishing between fish bone accumulation due to anthropogenic activities and post-

depositional processes (following natural death) at submerged archaeological sites is critical

[16, 66, 74, 84, 85, 99–102]. Since Ohalo II is a waterlogged site, we cannot disregard the possi-

bility that the fish assemblages may have resulted from natural death. To eliminate such possi-

bility, we compared the Ohalo-II fish assemblages with a natural death assemblage, sampled

from an area located 150 m north of Ohalo-II site [74]. The area selected (100 X 50 m) was
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divided into squares of 0.5 X 0.5 m. Using a random sampling program, 24 squares were

selected for excavation [74]. Each square was excavated to a maximum depth of 30-50cm,

according to its lithological composition. The bottom clay layer was radiocarbon dated to

1515 ± 50 y BP (uncalibrated 14C and uncorrected to reservoir age, University of Arizona, Tuc-

son). A total of 5,795 fish remains from the 24 random squares, was recovered and studied

[74].

For comparison among the assemblages, based on several studies, we established a “diag-

nostic signature criteria” [8, 16, 65–67, 71, 73, 74, 84, 85, 103–106]. Moreover, the fish taxon

representation at Ohalo II (relative distribution of the four taxonomic groups in each locus)

was compared with the taxonomic composition of the lake’s littoral zone and natural assem-

blage [74], using a multivariate procedure of multidimensional scaling (MDS). MDS is used to

provide a visual representation of the pattern of loci proximities (including natural accumula-

tion) in regard to taxon presentation. The MDS is an ordination procedure that compresses

multidimensional space onto a simple two-dimensional representation (Borg, 1981). It has no

underlying assumptions about the normality or linearity of the data. The fit to the two-dimen-

sional model is evaluated by a stress factor, which ideally should be lower than 0.1. MDS plots

the variables on a map that places similar variables adjacent to each other while those that

greatly differ are located at a greater distance.

Results

Fish composition and diversity

The taxonomic composition was calculated from a sample of 16,939 fish remains (NISP)

recovered from Loci 1, 3, 7, and 8 (Table 2). Of the six native families that currently inhabit

Lake Kinneret (Cyprinidae, Cichlidae, Nemacheilidae, Clariidae, Cyprinodontidae, Blennii-

dae), only cyprinids and cichlids were identified at Ohalo II. Identification to genus and spe-

cies level was possible for 28% of the bones (NISP = 4,746; Table 2). Of the 19 native extant

fish species in Lake Kinneret, eight species were identified at Ohalo II (Tables 1 and 2). These

include four of the seven native taxa of cichlids, including the endemic genus Tristramella sp.

For Cyprinidae, of the nine native species, four were identified at Ohalo II, including the

endemic species Mirogrex (Acanthobrama) terraesanctae (Tables 1 and 2). The similarity

(Sørensen) index in species diversity is 61%.

Species richness (S’) and diversity (HB) varied among the four studied loci (Table 2). The

highest values appeared in Locus 7 (S’ = 8; HB = 2.4) and the lowest in Locus 3 (S’ = 4;

HB = 1.17).

Rarefaction analyses indicated that the differences in species diversity among the loci would

remain even after correction for sample size (Fig 2). Noteworthy, Locus 1 exhibits the highest

NISP (11,676), but has a species richness (S’ = 6) lower than Locus 7, which has a much smaller

sample size (NISP = 4,000; S’ = 8). Moreover, the ratio between cyprinids and cichlids

(Table 2) is nearly equal (2:1) in Loci 3 (2.26:1), L.7 (2.12:1), and L.8 (1.86:1) (chi squared = 11.2,

df = 2; p>.05, Table 2), while in Locus 1 it is much higher (15:1) (chi squared test = 4001.2,

df = 3, p<0.0001).

Due to the relatively small number of fish identified to the species level, for further statisti-

cal analyses we grouped the remains (bones, teeth, otoliths) into four taxonomic groups: M.

terraesanctae, small cyprinids, large cyprinids, and cichlids (Table 3).

Bone state of preservation

Skeletal element richness. The number of identified skeletal elements differed among

loci. As expected, we found a high correlation between NISP and skeletal element richness
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(Spearman’s correlation r = .820); the highest values of skeletal element richness were in Loci 1

(S’ = 74) and 7 (S’ = 58). Interestingly, despite the relatively low NISP sample from Locus 8

(n = 537), skeletal element richness was relatively high (S’ = 46). Table 4 presents the number

of skeletal elements identified according to taxonomic group and loci. While there is no signif-

icant difference between the number of skeletal elements identified in Loci 7 and 8 (chi

squared test = 1.948; df = 3; p>.05), Locus 1 significantly differs (chi squared test = 25.701;

df = 6; p<0.0001; p<0.0001), probably due to the high richness of skeletal elements observed

for M. terraesanctae and other small cyprinids.

Skeletal element representation by anatomical region. For further analysis we grouped

the bones into nine anatomical regions (Table 5), which revealed the following preservation

patterns: In Locus 1, all anatomical regions are present, regardless of taxonomic group. In Loci

7 only large cyprinids and cichlids are represented by all anatomical regions. The vertebral

Table 2. Ohalo II fish remains taxonomic composition, species richness and diversity, by studied loci (taxonomic abundance (%) is calculated according to the dif-

ferent taxonomic levels: Family, genus and species, and therefore the total NISP varies).

Total Locus 1 Locus 3 Locus 7 Locus 8

Family Identified Species NISP % NISP % NISP % NISP % NISP %

CICHLIDAE—Total 3,220 19.0 728 6.20 272 44.2 1,932 47.0 288 53.6

Cichlidae Oreochromis aureus 2 0.1 0 0.00 0 0.00 2 0.29 0 0.00

(Species level) Sarotherodon galilaeus 3 0.1 1 0.03 0 0.00 2 0.29 0 0.00

Coptodon zillii 9 0.2 0 0.00 0 0.00 9 1.30 0 0.00

Tristramella sp. 43 0.9 6 0.17 9 2.64 19 2.75 9 3.88

CYPRINIDAE -Total 16,939 81.0 11,676 94.0 616 56.0 4,110 53.0 537 46.4

Cyprinidae Luciobarbus/ Carasobarbus 177 3.7 53 1.52 21 6.16 85 12.32 18 7.76

(Species level) Carasobarbus canis 34 0.7 11 0.32 5 1.47 11 1.59 7 3.02

Luciobarbus longiceps 74 1.5 17 0.49 10 2.93 37 5.36 10 4.31

Capoeta damascina 284 6.0 78 2.24 25 7.33 131 18.99 50 21.55

Luciobarbus /Capoeta 1,083 22.7 400 11.48 271 79.47 275 39.86 137 59.05

Mirogrex terraesanctae 3,037 63.9 2,917 83.75 0 0.00 119 17.25 1 0.43

Species richness 6 4 8 5

Shannon Wiener Function 2.7 3.0 3.4 3.1

Brillouin Index (HB) 0.86 1.17 2.39 1.80

https://doi.org/10.1371/journal.pone.0198747.t002

Fig 2. Rarefaction curves for species richness, as a function of NISP, according to the studied loci.

https://doi.org/10.1371/journal.pone.0198747.g002
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column is significantly over-represented, regardless of excavated locus or taxonomic group:

expected vertebrae frequency for the cichlid was 15%, whereas the observed frequency ranged

between 60–94%; for the cyprinid the expected frequency was 18–20% whereas the observed

frequency ranged between 31–93% [42]. Therefore the postcranial region is significantly over-

represented at Ohalo II (survival index SI>1.3); while the cranial region is significantly under-

represented for most of the taxonomic groups and excavated loci (Table 6; Fig 3). An excep-

tional presentation of the cranial region was observed for M. terraesanctae remains from Locus

1, for large cyprinid remains from Locus 7, and for small and large cyprinid remains from

Locus 8 (Fig 3).

Bone preservation and fragmentation. We found a significant difference in bone preser-

vation and fragmentation patterns among loci (chi squared = 944.133; df = 6; p = 0.0001). The

bones from Locus 7 were best preserved, followed by Locus 1 (Fig 4). The bones from Loci 3

and 8 exhibited a high degree of fragmentation. The best-preserved skeletal elements in all loci

were the vertebrae. Bones from the oromandibular region and opercular apparatus were highly

fragmented in large cyprinids and cichlids. We did not observe any difference in state of frag-

mentation between the cranial and postcranial regions.

Signs of burning (bone color). Most of the bones (87%) displayed brown and dark brown

colors (Table 7), with a small sample (ca. 9%) displaying various colors, ranging from black to

white. Examination of the mineralogical content with FTIR revealed that bones displaying

brown, dark-brown and black colors were mineral-stained (ca. 20%); bones with gray and white

colors were burned (ca. 6%), and therefore indicative of human impact; and bones with orange-

brown color (ca. 3%) were oxidized, suggesting that some of the fish remains had been periodi-

cally exposed to the open air (probably during periods when the lake’s water level was low).

Based on the FTIR analysis, signs of burning were identified in ca. 12% of the remains recovered

at Locus 7 (ashes). In Locus 1, less than 1% of the fish remains exhibited signs of burning.

Fish bone spatial distribution

In all the studied loci, the fish remains exhibited a clumped distribution pattern with a high

value of bone mean scatter frequency (BSF) (range of 90–930 bones per 0.25 m2).

Table 3. Total NISP and relative abundance calculated for fish recovered at Ohalo-II, according to the four taxonomic groups� and loci.

Taxonomic Locus 1 Locus 3 Locus 7 Locus 8

Group NISP % NISP % NISP % NISP %

M. terraesanctae 2,917 25.0 0 0.0 119 2.9 1 0.2

Small cyprinid� 7,472 64.0 12 1.9 1,520 37.0 26 4.8

Large cyprinid� 559 4.8 332 53.9 539 13.1 222 41.3

Cichlids 728 6.2 272 44.2 1,932 47.0 288 53.6

Total NISP 11,676 100.0% 616 100.0% 4,110 100.0% 537 100.0%

�Classification to size categories was carried out based on vertebrae centrum maximum width diameter: “small cyprinids”- < 3.5 mm; “large cyprinids” > 3.6 mm.

https://doi.org/10.1371/journal.pone.0198747.t003

Table 4. Number of skeletal elements identified at Ohalo II, according to the studied loci and taxonomic group.

Taxonomic group Locus 1 Locus 3 Locus 7 Locus 8

Cichlids 30 13 35 28

Large cyprinids 48 23 40 32

M. terraesanctae 32 0 11 1

Small cyprinids 62 7 28 15

https://doi.org/10.1371/journal.pone.0198747.t004
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Table 5. Frequency (NISP) and percentage of skeletal elements recovered at Ohalo II, according to anatomical regions, studied loci, and taxonomic group.

Total fish Cyprinidae Cichlidae

Locus Anatomic region Mirogrex Small Large

NISP % NISP % NISP % NISP % NISP %

Locus 1 Cranial

Neurocranium 713 6.1 186 6.4 507 6.8 7 1.2 13 1.8

Branchial region 703 6.0 425 14.8 194 2.6 80 14.3 4 0.6

Hyoid region 536 4.6 456 15.6 66 0.9 8 1.4 6 0.8

Oromandibular region 338 2.9 252 8.6 48 0.6 29 5.2 9 1.2

Opercular series 187 1.6 146 5.0 35 0.5 2 0.4 4 0.6

Postcranial

Appendicular skeleton 685 5.9 129 4.4 538 7.2 9 1.6 9 1.2

Median fins 635 5.4 46 1.6 555 6.9 21 3.8 51 7.0

Weberian apparatus 460 3.9 89 3.0 351 4.7 20 3.6 - -

Vertebral column 7,419 63.5 1,188 40.7 5,216 70.0 383 68.5 632 86.8

Total 11,676 100% 2,917 100% 7,472 100% 559 100% 728 100%

Locus 3 Cranial

Neurocranium 7 0.74 0 0.0 0 0.0 0 0.0 7 2.6

Branchial region 30 3.16 0 0.0 0 0.0 29 8.7 1 0.4

Hyoid region 4 0.42 0 0.0 1 8.33 3 0.9 0 0.0

Oromandibular region 8 0.84 0 0.0 0 0.0 6 1.8 2 0.7

Postcranial 0 0.0

Postcranial bones 3 0.32 0 0.0 0 0.0 1 0.3 2 0.7

Median fins 24 2.53 0 0.0 2 16.7 17 5.1 5 1.8

Weberian apparatus 4 0.42 0 0.0 1 8.3 3 0.9 0 0.0

Vertebral column 868 91.56 0 0.0 8 66.7 273 82.2 255 93.7

Total 948 100% 0 0.0 12 100% 332 100% 272 100%

Locus 7 Cranial

Neurocranium 23 0.5 1 0.8 3 0.2 3 0.6 16 0.8

Branchial region 203 4.9 21 17.7 23 1.5 149 27.6 10 0.5

Hyoid region 35 0.9 0 0.0 1 0.1 15 2.8 19 1.0

Oromandibular region 82 2.0 0 0.0 4 0.3 47 8.7 31 1.6

Opercular series 19 0.5 0 0.0 0 0.0 2 0.4 17 0.9

Postcranial

Appendicular skeleton 92 2.2 1 0.8 7 0.5 13 2.4 71 3.7

Median fins 648 15.8 1 0.8 54 3.5 63 11.7 530 27.4

Weberian apparatus 17 0.4 1 0.8 10 0.7 6 1.1 - -

Vertebral column 2,991 72.8 94 79.0 1,418 93.3 241 44.7 1,238 64.1

Total 4,110 100% 119 100% 1,520 100% 539 100% 1,932 100%

Locus 8 Cranial

Neurocranium 12 2.2 0 0.0 2 8.0 0 0.0 10 3.5

Branchial region 59 11.0 0 0.0 3 12.0 46 20.7 10 3.5

Hyoid region 9 1.7 0 0.0 0 0.0 5 2.3 4 1.4

Oromandibular region 40 7.5 0 0.0 5 19.0 23 10.4 12 4.2

Opercular series 20 3.7 0 0.0 4 15.0 2 0.9 14 4.9

Postcranial 0.0

Appendicular skeleton 33 6.2 0 0.0 0 0.0 13 5.9 20 6.9

Median fins 69 12.9 0 0.0 3 11.0 25 11.3 41 14.2

Weberian apparatus 7 1.3 0 0.0 1 4.0 6 2.7 - -

(Continued)
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Locus 1. The 11,676 fish remains sampled from 53 squares (square = 50X50X0.05 cm)

exhibited a concentrated and clumped distribution pattern (Id = 5.65, MU = 0.99, MC = 1.01,

Ip = 0.60), with an average BSF value of 930 bones per 0.25 m2 (Fig 5A). Most of the remains

were recovered from Floor II (82%), and only 16% from Floor I. On Floor I most of the

remains were concentrated in two sub-squares: E80d (36%) and E81d (20%); and on Floor II

most were concentrated in three sub-squares: E79 b (11%), E79c (35%) and E80c (20%) (Fig

5A). The concentration pattern of the fish bones greatly varied (up to 50-fold) in different

parts of the structure. Remains of large cyprinids and cichlids were recovered in the eastern

part of the hut, mainly in square G 80. Small carp bones were abundant in squares E 79–80,

located in the western part of the hut (Fig 5A).

Locus 3. The 616 fish remains sampled from this structure exhibited a concentrated and

clumped distribution (Id = 2.0606, MU = 0.9933, MC = 1.0106, Ip = 0.5584) with a BSF aver-

age value of 190 bones per 0.25 m2.

Locus 7. The 4,110 fish remains sampled from ten squares exhibited a dense concentra-

tion and an average BSF of 843 bones per 0.25 m2 (Fig 5). Some of the vertebral columns were

intact, representing deposition of complete fish (Fig 5B). The squares with the highest concen-

tration of fish remains were located in two areas: in the center (G-H 91) and in the northern

section (H 88–89) of the locus.

Table 5. (Continued)

Total fish Cyprinidae Cichlidae

Locus Anatomic region Mirogrex Small Large

NISP % NISP % NISP % NISP % NISP %

Vertebral column 288 53.6 1 100.0 8 31.0 102 46.0 177 61.5

Total 537 100% 1 100% 26 100% 222 100% 288 100%

https://doi.org/10.1371/journal.pone.0198747.t005

Table 6. Frequency (NISP), percentage, and survival index (SI) calculated for cranial and postcranial bones, according to the studied loci at Ohalo II.

Excavated Taxonomic Cranial region Postcranial region Total

Area group NISP % SI NISP % SI NISP

Locus 1 M. terraesanctae 1,465 50.2 0.76� 1,452 49.8 1.46� 2,917

Small cyprinids 850 11.4 0.18� 6,622 88.6 2.39� 7472

Large cyprinids 126 22.5 0.36� 433 77.5 2.09� 559

Cichlids 36 4.9 0.08� 692 95.1 2.57� 728

Locus 3 M. terraesanctae 0 0.0 0.00 0 0.0 0.00 0

Small cyprinids 1 8.3 0.84� 11 91.7 5.39� 12

Large cyprinids 38 11.4 0.05� 294 88.5 3.54� 332

Cichlids 10 3.7 0.02� 262 96.3 4.38� 272

Locus 7 M. terraesanctae 22 18.5 0.28� 97 81.5 2.40� 119

Small cyprinids 31 2.0 0.03� 1,489 98.0 2.65� 1,520

Large cyprinids 216 40.1 0.64� 323 59.9 1.62� 539

Cichlids 83 4.8 0.08� 1,839 95.2 1.51� 1,932

Locus 8 Small cyprinids 14 54.0 0.850 12 46.0 1.25 26

Large cyprinids 76 34.2 0.54� 146 65.8 1.78� 222

Cichlids 50 17.4 0.28� 238 82.6 1.31� 288

�Chi-squared test: significantly different from the expected value p<0.001.

https://doi.org/10.1371/journal.pone.0198747.t006
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Locus 8. The 537 fish remains sampled from this locus were concentrated in two sub-

squares, and therefore were clearly clumped in their distribution pattern.

Fig 3. Cranial vs. postcranial fish remains from Ohalo II, according to taxonomic group and studied loci (fish

skeleton modified from [107]).

https://doi.org/10.1371/journal.pone.0198747.g003
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Fish economic value

The fish exploitation index (FEI) calculated for each locus revealed the economic value of large

fish (L. longiceps, C. canis, C. damascina and cichlids) to the inhabitants of Ohalo II. In Loci 3,

7, and 8, large fish dominated the assemblage (FEI for Locus 3 = .98, Locus 7 = .60, Locus 8 =

Fig 4. State of bone preservation at Ohalo II, according to studied loci (chi squared test = 944.133; p = 0.0001; df = 6).

https://doi.org/10.1371/journal.pone.0198747.g004

Table 7. Frequency (NISP) of colors and signs of burning recorded on fish remains from Ohalo II, according to the studied loci.

Locus 1 Locus 3 Locus 7 Locus 8 Total

Bone Color NISP % NISP % NISP % NISP % NISP %

Black 244 2.9 65 7.0 293 5.4 22 4.0 624 4.1

Gray 42 0.5 92 10.0 493 9.2 11 2.0 638 4.2

White 35 0.4 15 1.6 152 2.82 3 0.5 205 1.3

Dark brown 1,124 13.2 227 24.6 1,014 18.8 148 26.6 2,513 16.4

Brown 6,942 81.8 498 54.0 3,078 57.2 343 61.6 10,861 70.7

Light Brown 44 0.5 1 0.1 20 0.4 2 0.4 67 0.4

Orange-Brown 59 0.7 25 2.7 334 6.2 28 5.0 446 2.9

Total 8,490 100.0% 923 100.0% 5,384 100.0% 557 100.0% 15,354 100.0%

https://doi.org/10.1371/journal.pone.0198747.t007
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.95), while in Locus 1 large fish were rare (FEI = .11), with a preponderance of small-sized cyp-

rinids and M. terraesanctae (Kinneret Bleak).

Natural vs. Cultural accumulation

The characteristics of our studied natural death assemblage (located ca. 150 meter north-west

of Ohalo II site) and those of Ohalo II assemblages are given in Table 8. While the fish assem-

blage excavated at Locus 1 shows similar characteristics to those of the natural death assem-

blage, those of Loci 3, 7, and 8 differ in three major aspects: abundance of large carps and

cichlids, absence or rarity of Kinneret bleak and small cyprinids, and burning marks on ca.

10% of the bones.

Fig 5. A. Fish remains spatial distribution pattern in Loci 1 (floors I and II combined) and 7 (in Locus 1 areas with a

large concentration of edible grains from floor II are marked, after [40]; B. In-situ fish skeletons recovered at Locus 7.

https://doi.org/10.1371/journal.pone.0198747.g005
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MDS analysis clustered Loci 3, 7, and 8 assemblages together, and distinctively separate

from the natural accumulation (Fig 6), implying a similarity in fish pattern of exploitation

(e.g., a preference for cichlids and large carps). The Locus 1 fish assemblage, in contrast, exhib-

ited a similarity with the natural accumulation, mainly due to the high presence of Kinneret

bleak at both places.

Discussion

Recent zooarchaeological and isotopic studies have indicated a sharp shift in the role of aquatic

resources in the diet and economy of ancient populations since the mid-Upper Paleolithic [1,

5, 108–110]. The present study provides solid data indicating that the diet breadth during the

Upper Paleolithic was broader than has been previously assumed, and that freshwater fish

were an important dietary component.

The incorrect notion that fish played only a small role in the Late Pleistocene human diet is

probably due to the rarity of systematic studies on fish remains and fishing among prehistoric

Table 8. Comparison between diagnostic criteria of naturally accumulated fish remains vs. fish remains recovered at Ohalo II (OH), according to the studied loci

(loci 1, 3, 7, 8).

Diagnostic Criteria Natural assemblage OH- Locus 1 OH-Locus 3 OH-Locus 7 OH-Locus 8

Sample size NISP 5,037 11,676 616 4,110 537

Color and dispersion:

Mean bone scatter frequency

(BSF)

423 bones per 0.25sqm

(range 8–2840 bones)

930 bones per 0.25sqm 190 bones per

0.25sqm

842 bones per

0.25sqm

Not enough data

Morisita Index of dispersion-

Id

6.52 5.65 2.06 2.25 -

Bone dispersion pattern Clumped Clumped Clumped Clumped Clumped

Color +burning signs Brown (light to dark) no

burning signs

> 99% brown 1% <burning

signs

90% Brown, 10%

burnt

88% Brown, 12%

burnt

97.5% Brown, 2.5%

burnt

Taxonomic composition:

Highest taxonomic richness S = 5 S = 6 S = 4 S = 8 S = 5

Highest taxonomic diversity

(Brillouin’s Index)

HB = 1.59 HB = 0.86 HB = 1.17 HB = 2.4 HB = 1.8

Family representation Cyprinidae 80%

Cichlidae 6%

Clariidae 6%-only on

surface layer

Cyprinidae 90%

Cichlidae 6%

Cyprinidae 55%

Cichlidae 44%

Cyprinidae 53%

Cichlidae 47%

Cyprinidae 46%

Cichlidae 54%

Abundant taxa M. terraesanctae, small

cyprinids

M. terraesanctae, small

cyprinids

Large cyprinids&

cichlids

Large cyprinids&

cichlids

Large cyprinids&

cichlids

Fish Exploitation Index 0.182 0.11 0.98 0.60 0.95

Skeletal representation:

Skeleton richness 55 74 30 58 46

Scales Clumps of scales in all

taphofacies.

No scales No scales No scales No scales

Otoliths No otoliths No otoliths No otoliths No otoliths Cichlids otoliths

Crania vs. postcrania:

M. terraesanctae Crania region over

represented

Crania region well preserved

but under- represented

No cranial bones No cranial bones No cranial bones

Large cyprinids Crania region over

represented

Crania region under-

represented

Crania region under-

represented

Crania region under-

represented

Crania region under-

represented

Cichlids Crania region under-

represented

Crania region under-

represented

Crania region under-

represented

Crania region under-

represented

Crania region under-

represented

Vertebral column SI Over-represented for all

taxa in all samples

Over-represented for all taxa Over-represented for

all taxa

Over-represented for

all taxa

Over-represented for

all taxa

https://doi.org/10.1371/journal.pone.0198747.t008
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populations [15, 17], as well as preservation bias, as witnessed from ethnographic studies [71,

111–114]. As a result, fish have been portrayed as an unusual exception and thus as an unim-

portant dietary element [1, 17, 115]. The special taphonomic conditions at Ohalo II, i.e., a

water-logged site covered by clay [102, 116], immediately following its abandonment (as

attested by the variety of fragile in-situ remains on the floors), have resulted in excellent

Fig 6. Correspondence analysis of taxonomic groups’ relative abundance (%) in the natural accumulation and at

Loci 1, 3, 7, and 8.

https://doi.org/10.1371/journal.pone.0198747.g006

Table 9. Characteristics of traditional fishing camps based on ethnographic data, compared to Ohalo II character-

istics (following [42, 73, 120, 122–125].

Feature Traditional fishing camp Ohalo II

Location Within the vicinity of the shoreline (ca. 100 m) Within the vicinity of the shoreline

Size 200–7,000 sqm Ca. 2,000 sqm

Constructions Semi-circular structures with hearths Oval structures, some with hearths

Fish production

area

Outside of the dwelling huts Locus 8 may attest to a specific area

for fish long-term preservation

Fishing tools Weirs, baskets, rakes, wooden traps, cretated barriers,

hands, gill nets, cast nets, ichthyotoxic plants,

harpoons, bow and arrow, hooks and lines etc.

Double-notched weights, charred

cord, flint microliths

Animal remains� Mammals, reptiles, and birds Mammals, reptiles, and birds

Length of stay Seasonal repeated occupations for short or long term Repeated occupations for short or

long term, during different seasons.

Tools for food

processing

Pestles and mortars Large and shallow stone bowls

�Mollusks are not included as it is impossible to differentiate in waterlogged site between natural and cultural

assemblages.

https://doi.org/10.1371/journal.pone.0198747.t009
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preservation of the fish remains, providing a rare opportunity to examine fish exploitation at

the end of the Upper Paleolithic.

Prior to any discussion of human fishing activities at any water-logged site, it is important

to examine the possibility that the fish bones could have accumulated at the site due to natural

death of the fish rather than as a result of human activity. The comparison of Ohalo II fish

bone assemblages from Loci 3, 7, and 8 with the natural death assemblage, excavated beyond

the range of the Ohalo II site [74] (Table 8), revealed a number of differences that attest to fish-

ing activity at the site. For example, maximum species richness was higher at Ohalo II (S = 8)

than at the natural death assemblage site (S = 5); the diversity index of the death assemblage

was significantly lower (HB = 0.38–1.594) compared to Loci 3, 7, and 8 (HB = 1.17–2.398); the

natural death fish exploitation index was much lower (0.1) relative to the indices calculated for

Ohalo II (>0.6), probably due to the abundance of large carps and cichlids in these loci; and

the natural death assemblage was characterized by over-representation of the cranial region

(of M. terraesanctae, large cyprinids and catfish), whereas at the Ohalo II loci they were under-

represented. Exceptional in the comparison was the clumped distribution pattern with a high

NISP for bone-scatter frequency, which was expected to differ between the two assemblages

[71, 73, 85, 86], but did not. Unlike Loci 3, 7, and 8, Locus 1, which displayed an exceptional

state of preservation, showed a high preponderance of M. terraesanctae and small cyprinids,

similar to that of the natural death assemblage. The cultural and taphonomic implications of

this finding are discussed separately in section 5.2B.

Does Ohalo II display the characteristics of an artisanal fishing

community?

Ethnographic and ethno-archaeological studies have demonstrated that traditional fishing

sites possess a number of common physical characteristics (Table 9) [71, 73, 112, 117–121].

We examined these characteristics (Table 9) in order to gain further understanding of the role

of fish and fishing at Ohalo II.

A. Site features

Data on artisanal small-scale fishing groups indicate that the majority of present-day fishing

camps are located within the vicinity of the shoreline (ca. 100 m), vary in size according to

length of stay (200–7000 sqm), and include several semi-circular structures [73, 126] similar to

what has been observed at Ohalo II [36, 37]. At Lake Turkana, for example, the structures

serve as sleeping shelters (windbreaks) and/or to protect the hearths inside. Hearth(s) and

grind-stones, commonly found within these traditional structures, were also found within the

structures at Ohalo II [18, 127–129].

Many of the fishing camps have been repeatedly occupied (for example 60% at Lake Tur-

kana) [42, 85, 130], and include in addition to fish remains, bones of reptiles, mammals, and

birds, [73], as also reported for Ohalo II site [23, 24, 34, 131]. This attests to the diverse subsis-

tence economy of artisanal fishing villages. The data presented in Table 9, lend further support,

though from a different angle, that Ohalo II presents characteristics similar to those of a pres-

ent-day artisanal fishing village, and that the inhabitants were engaged in intensive aquatic

activities throughout the year, by the same cultural entity.

No less important is the observation from ethnographical studies that fish preservation en

masse does not require either specially constructed facilities or salt, or a commercial motive

[66, 114, 117]. The Lake Turkana fishing camps have no constructed facilities for long-term

preservation, and preservation activities usually take place outside of the dwelling huts. Ohalo

II may present a similar situation. The large number of well-preserved fish remains (crania
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and post-crania) recovered in a small pit (Locus 8) outside of the dwelling huts may provide

further evidence of fish preservation at Ohalo II. If this is the case, then Ohalo II offers the ear-

liest evidence of long-term fish preservation in the southern Levant.

Cultural artifacts directly associated with fishing are usually rare at prehistoric sites, hinder-

ing our understanding of past fishing technology and efficiency [117]. Nevertheless, several

artifacts that have been retrieved from Ohalo II may shed light on past local fishing techniques.

The presence of double-notched pebbles and small pieces of charred cord may indicate the use

of fishing nets or weirs [116, 127, 132–134]. Flint microliths and small bone tools identified at

the site [23, 135] could have been employed for hook and line fishing. Finally, considering fish

breeding behavior, hand fishing could also have been used (Table 1).

B. Characteristics of the fish remains

In the previous sections we have demonstrated that Ohalo II manifests many of the site charac-

teristics of a small-scale fishing community and that the characteristics of the various fish

assemblages retrieved at the site differ from those of the natural death fish bone assemblages.

In this section we compare the Ohalo II fish assemblages with assemblages uncovered at other

fishing sites.

Taxonomic diversity: The Ohalo II fish assemblages are characterized by low taxonomic

diversity (Sørensen index 61%), i.e., only two families out of seven (Cyprinidae and Cichlidae)

were present at the site. This finding is in line with other studies showing that fish assemblages

derived from targeted exploited species of littoral/shallow water manifest a low taxonomic

diversity (they do not include non-edible species) [13, 73, 114, 117, 136].

Skeletal representation. In traditional fishing camps, skeletal element representation

largely depends on the type of processing activities carried out at the site [8, 66, 69, 111, 112,

114, 119]. For example, at fish production sites vertebral elements are rare or totally absent (as

they are transported away from the site). This is in contrast to base camps, where vertebral

remains are over-represented relative to cranial remains [13, 114, 137]. Moreover, culinary

practices and fish cooking reduce survivorship of fish remains, and may therefore contribute

to a biased skeletal representation [68, 114, 138, 139]. At Ohalo II we have identified, for the

first time, all of the characteristics of a final Upper Paleolithic long-term fishing camp where

fish were intensively exploited and preserved.

Cut marks. The fact that no cut marks were identified on the fish bones from Ohalo II is

not surprising since, in general, prior to the use of metal knives cut marks on fish bones are

generally faint, small, difficult to identify, and tend to dissolve through time [13, 73, 114, 140,

141]. For example, at the coastal site of Tel Dor, dated to the Iron Age, out of 756 fish bones

analyzed only five cranial bones of Lates niloticus (ca. 0.6%) presented cut marks [142].

Burning signs. In present-day fishing villages changes in bone color due to fish roasting

appear on 3–20% of the remains [114]. At Ohalo II, clear evidence of burning (gray/white

color) was identified on ca. 12% of the fish bones. Experimental studies have shown that a

gray/white color is reached when fire temperature is over 500˚C [68, 87, 88, 138]. Conse-

quently, these bones have a lower chance of survival [68]. It is interesting that most of the

bones displaying signs of burning were from the hearth of Locus 7. FTIR analyses revealed that

the dark-colored bones are a result of natural mineral staining and not of exposure to fire [42,

143].

Can we identify evidence of school and pelagic fishing at Ohalo II?

The Ohalo II fish remains exhibit two distinctive patterns of exploitation: 1) a dominance of

large cyprinids and cichlids in three of the studied loci; and 2) a dominance of small cyprinids,
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especially the Kinneret bleak (Mirogrex terraesanctae) in Locus 1. The preponderance of small

cyprinids, mainly M. terraesanctae, in Locus 1 raises the question: Were M. terraesanctae
exploited by the Ohalo II inhabitants, and if so, how were they caught and what was their role

in the diet of the local inhabitants? To address this question, we first need to discuss M. terrae-
sanctae’s ecology, economic importance, fishing techniques, and depositional history [74].

The Kinneret bleak–Mirogrex terraesanctae. The Kinneret bleak (M. terraesanctae) is a

small pelagic fish (total length 220 mm) endemic to Lake Kinneret [144, 145]. Although

pelagic, during the breeding season, from November to May with a peak in mid-winter (Janu-

ary-February), it spawns in the shallow littoral zone (0–50 cm). Spawning begins shortly after

nightfall, when schools of fish move along the shoreline in rocky regions and release their milt

and eggs. The adhesive eggs attach to the surface of recently inundated, algae-free stones [144].

M. terraesanctae is currently highly abundant in Lake Kinneret and constitutes more than 50%

of the annual commercial catch [146, 147]. However, despite its abundance, it is currently

regarded as a tasteless fish and of low economic value [147].

Mirogrex terraesanctae: Cultural exploitation or natural death?. Assuming that the M.

terraesanctae remains recovered at Locus 1 represent human activity, then this is the first and

earliest evidence of the mass harvesting of small pelagic fish, in the Levant, either from the

pelagic region or from the littoral zone during the fish-breeding season (winter). Either of

these two options is unique and would constitute the earliest evidence of either night fishing of

targeted small-sized fish or of pelagic fishing. If Ohalo II inhabitants were indeed engaged in

any of these exceptional activities, then among the four studied loci, it is currently evident only

at Locus 1 (a unique structure in many other archaeological aspects [27, 40, 134]). Moreover, if

such exceptional fishing technology and activity indeed existed at Ohalo II, it then disappeared

from the known Levantine archaeological records and reappeared only in later historic periods

[15, 17].

There are two main arguments, however, that speak against the possibility of school fishing

at Ohalo II: 1). Today M. terraesanctae is considered as a tasteless species and of low economic

value; and 2). M. terraesanctae assemblage characteristics in Locus 1 bear a similarity to those

of the mass death natural assemblage in the lake’s clay sediment (Table 8) [74]. A natural death

assemblage with a high percentage of Mirogres sp. was also identified from Lake Hula [16, 77]

Moreover, a comparison between the fish remains’ spatial distribution and activity areas

identified at Locus 1 (Floor II) reveals that the clumped dispersal pattern observed for M. ter-
raesanctae and small cyprinids (Fig 5A) differs from that observed for the large fish, lithics,

and edible plant remains recovered in association with floor II [25, 38, 40, 134]. While this pat-

tern may shed further information in regard to different areas of activities in Locus 1, an exam-

ination of the wetland botanical remains reveals their preponderance in Locus 1, and in the

vicinity of M. terraesanctae remains [40, 134]. For example, the exceptional remains of

unburned Rubus sanguineus (wild berry) were recovered in the same square E79a, as M. terrae-
sanctae [40]. Since these berries are usually consumed immediately, and do not preserve well

in archaeological assemblages, Weiss et al., (2008) could not explain these finds. From an envi-

ronmental and ecological perspective Rubus sanguineus may also represent the natural wetland

vegetation that grew during periods of high water level [52, 102, 134].

Was fishing a year-round activity or carried out sporadically at Ohalo II?. Studies have

revealed that for the last 40,000 years ancient populations have sporadically exploited fish,

which provide a high-return meal as they are easy to catch due to their breeding behavior and

migration routes [1, 9, 15, 72, 85, 148–151]. During the Upper Paleolithic, for example, Clarii-

dae (catfish) were among the most heavily exploited fish in Africa and Egypt [152–155], and

Salmonidae in Europe and North America [1, 65, 137, 156–160]. The reproduction behavior of
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these fish and the shallow habitat in which they breed make them extremely vulnerable to

fishing.

The fish exploitation patterns observed at Ohalo II accord with those observed at other

Upper Paleolithic sites. The diversity of fish (Tables 1 and 2) indicates that their exploitation

pattern was based on seasonal abundance and breeding behavior (in the littoral zone of Lake

Kinneret and nearby rivers) (Table 1). The cichlids breed along the shore in spring and sum-

mer (April-September) [52], while the cyprinids breed in winter (January-April), in running

streams and along the littoral zone. This suggests that fishing was part of the daily-life activities

of the Ohalo II inhabitants and that it was not sporadic and opportunistic activity but rather,

practiced routinely throughout most of the year. The Kinneret fish breeding locations facili-

tated littoral fishing and ensured a constant supply of high-return, low-cost food for the Ohalo

II people. A large subsistence return for minimal procurement efforts has also been docu-

mented for traditional fishing communities [8, 9, 85, 108, 114, 161], and was argued to be the

major cause of population concentration for an extended period of time in a limited area of

wetland habitat [134].

Summary

Upper Paleolithic economies are characterized by a sharp increase in the exploitation of

diverse small-sized animals [2, 4–6, 162–164]. Although fish are listed among these low-ranked

species, to the best of our knowledge no large-scale study has been conducted on the role of

fish during this period [15, 115]. The role of fish exploitation may consequently have been

largely underestimated, with fishing having been incorrectly attributed to periods of economic

stress following a dearth of the more traditional food items.

The findings from the current study of the fish remains from Ohalo II greatly change this

view and indicate that aquatic habitats too played an important role in the diet and economy

of past populations, greatly contributing to their stability [15, 16, 86, 115, 134, 165]. The Ohalo

II fish remains offer the sole and earliest evidence to date of a fisher-hunter-gatherer economy

along the Lake Kinneret shores, immediately after the peak of the Last Glacial Maximum [15,

17–19, 22, 26]. This economy reveals a complex taphonomic scenario representing evidence of

fish preparation and consumption, as part of a very rich diet that encompassed a variety of

mammals and birds and, no less important, a wide range of plant foods, including cereals, of

which some may have been cultivated [39, 166, 167].
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1. Adán GE, Álvarez-Lao D, Turrero P, Arbizu M, Garcı́a-Vázquez E. Fish as diet resource in North

Spain during the Upper Paleolithic. Journal of Archaeological Science. 2009; 36(3):895–9. http://dx.

doi.org/10.1016/j.jas.2008.11.017.

2. Binford LR. Post-Pleistocene adaptations. In: Binford SR, Binford LR, editors. New Perspectives in

Archaeology. Chicago: Aldine Publishing; 1968. p. 313–41.

3. Erlandson JM. The archeology of aquatic adaptations: paradigms for a new millenium. Journal of

Archaeological Research,. 2001; 9(4):287–350.

Earliest evidence of fishing in Lake Kinneret (Sea of Galilee), Israel

PLOS ONE | https://doi.org/10.1371/journal.pone.0198747 June 18, 2018 21 / 28

http://dx.doi.org/10.1016/j.jas.2008.11.017
http://dx.doi.org/10.1016/j.jas.2008.11.017
https://doi.org/10.1371/journal.pone.0198747


4. Flannery KV. Origins and ecological effects of early domestication in Iran and the Near East. In: Ucko

J, Dimbleby GW, editors. The Domestication and Exploitation of Plants and Animals. London: Gerald

Duckworth & Co.; 1969. p. 73–100.

5. Grosman L, Munro ND, Abadi I, Boaretto E, Shaham D, Belfer-Cohen A, et al. Nahal Ein Gev II, a Late

Natufian Community at the Sea of Galilee. PLoS ONE. 2016; 11(1):e0146647. https://doi.org/10.1371/

journal.pone.0146647 PMID: 26815363

6. Stiner M, Munro ND, Srovell TA. The Tortoise and the Hare: Small-game use, the broad spectrum rev-

olution and Paleolithic demography. Current Anthropology. 2000; 41(1):39–59. PMID: 10593724

7. Stiner MC. Thirty years on the “Broad Spectrum Revolution” and paleolithic demography. Proceedings

of the National Academy of Sciences. 2001; 98(13):6993–6. https://doi.org/10.1073/pnas.121176198

PMID: 11390968

8. Butler VL. Tui Chub taphonomy and the importance of marsh resources in the western great basin of

North America. American Antiquity. 1996; 61(4):699–717.

9. Butler VL. Resource depression on the Northwest coast of North America. Antiquity. 2000; 74:649–61.

10. Broughton JM. Late Holocene resource intensification in Sacramento Valley, California: The verte-

brate evidence. Journal of Archaeological Science. 1994; 21(4):501–14.

11. Boas UF. The Central Eskimo. Lincoln, Nebraska: University of Nebraska Press.; 1964.

12. Bar-Yosef O. Eat what is there: Hunting and gathering in the world of Neanderthals and their neigh-

bours. International Journal of Osteoarchaeology. 2004; 14(3-4):333–42.

13. Archer W, Braun DR. Investigating the Signature of Aquatic Resource Use within Pleistocene Hominin

Dietary Adaptations. PLoS ONE. 2013; 8(8):e69899. https://doi.org/10.1371/journal.pone.0069899

PMID: 23990891

14. Braun DR, Harris JWK, Levin NE, McCoy JT, Herries IR, Bamford MK, et al. Early hominin diet

included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proceedings of the

National Academy of Sciences of the United States of America. 2010; 107(22):10002–7. https://doi.

org/10.1073/pnas.1002181107 PMID: 20534571

15. Van Neer W, Zohar I, Lernau O. The emergence of fishing communities in the eastern Mediterranean

region: A survey of evidence from pre- and protohistoric periods. Paléorient. 2005; 31(1):131–57.
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